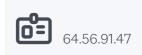
Course Assessment - Part A: Your Plan


CREATED

IP ADDRESS

COMPLETE

PUBLIC Feb 26th 2024, 10:12:34 am

#6'76

* Your Email

jpytel@cgcc.edu

Please select your course and name from the drop-down menu. If your course or name are incorrect or missing, contact the Curriculum and Assessment Administrative Assistant, 541-506-6037 or swade@cgcc.edu.

EET 112- Electrical Circuit Analysis 2- Jim Pytel- Winter 2024

* Part A: Your Plan DIRECTIONS 1. Choose three of your course outcomes to assess and report on this term (these will also be used in your Student Course Evaluation survey): Outcome #1

Apply electrical concepts to analyze the transient DC response of capacitive and inductive circuits.

* Outcome #2

Identify and calculate sinusoidal waveform properties.

* Outcome #3

Apply electrical concepts and use phasor equivalents to analyze AC circuits.

Have you completed an assessment for this course prior to this term?

Yes

If yes, are you assessing different outcomes?

Yes

Comments:

(No response)

2. To which degree(s) or certificate(s) does your course map? Degree, Certificate, & Program Outcomes

Associate of Applied Science: Electro-Mechanical Technology, Electro-Mechanical Technology Career Pathway Certificate

* Method of Assessment 3. What methods will be used to assess individual student understanding of each of these outcomes? (Please be specific.) Outcome #1: Method to assess student understanding

Given a capacitor charging or an inductor storage circuit with known component values and DC input voltages students will calculate charge/storage values and times, build the circuit, and verify predicted output.

* Outcome #2: Method to assess student understanding

Given a function generator, DMM, and oscilloscope a student will establish and measure an AC waveform with desired amplitude and frequency.

* Outcome #3: Method to assess student understanding

Given series, parallel, and series-parallel AC circuits with known component values and input voltages students will calculate charge/storage values and times, build the circuit, and verify predicted output.

* 4. How will you know if you were successful in your efforts to teach this outcome? Outcome #1:

Students can predict and measure desired electrical circuit properties for capacitor charging or inductor storage circuits.

* Outcome #2: How will you know if you were successful in your efforts to teach this outcome?

Students can use instrumentation to establish an AC waveform with desired amplitude and frequency.

* Outcome #3: How will you know if you were successful in your efforts to teach this outcome?

Students can predict and measure desired electrical circuit properties for series, parallel, and series-parallel AC circuits.

5. Instructor Questions: Create two course specific questions to be included on the Student Course Evaluation. Question #1

(No response)

Question #2

(No response)

Do you require the names of students who complete the course evaluation survey? (Please note: names will be sent to instructors the Thursday before term ends)

NO

Reminder, when completing Part B, instructors will be asked the following questions: Describe anything you did to assist the institutional effort to support students in improving achievement of the specified criteria for the following Institutional Learning Outcomes (ILO): 1. ILO#1 - Communication -"Content Development" and/or "Control of Syntax and Mechanics" 2. ILO#2 - Critical Thinking/Problem Solving - "Evidence" and/or "identify strategies" 3. ILO#4 - Cultural Awareness -"Openness" (Encouraging our students to "Initiate and develop interactions with culturally different others") 4. ILO#5 - Community and Environmental Responsibility - "Understanding Global Systems" and/or "Applying Knowledge to Contemporary Global Contexts" 5. ILO#3 - Quantitative Literacy -"Application/Analysis" and/or "Assumptions"

2