# General Physics

**Course Number: **PHY 201

**Transcript Title: **General Physics

**Created: **September 1, 2012

**Updated: **December 19, 2014

**Total Credits: **
4

**Lecture Hours: **30

**Lecture / Lab Hours: **0

**Lab Hours: **30

**Satisfies Cultural Literacy requirement: **
No

**Satisfies General Education requirement: **
Yes

**Grading options: **
A-F (default), P-NP, audit

#### Prerequisite / Concurrent

##### MTH 111

## Course Description

Introductory physics (algebra based) for science majors, pre-medical, pre-dental, pre-chiropractic and pre-physical therapy students. Topics include mechanics including statics, forces and motion energy, collisions, circular motion and rotational dynamics. Prerequisite or concurrent: MTH 111 its prerequisite requirements. Audit available.

## Intended Outcomes

After completion of this course, students will:

- Apply knowledge of linear motion, forces, energy, and circular motion to explain natural physical processes and related technological advances.
- Use an understanding of algebraic mathematics along with physical principles to effectively solve problems encountered in everyday life, further study in science, and in the professional world.
- Design experiments and acquire data in order to explore physical principles, effectively communicate results, and critically evaluate related scientific studies.
- Assess the contributions of physics to our evolving understanding of global change and sustainability while placing the development of physics in its historical and cultural context.

## Alignment with Institutional Core Learning Outcomes

## Outcome Assessment Strategies

At the beginning of the course, the instructor will detail the methods used to evaluate student progress and the criteria for assigning a course grade. The methods may include one or more of the following tools: examinations, quizzes, homework assignments, laboratory reports, research papers, small group problem solving of questions arising from application of course concepts and concerns to actual experience, oral presentations, or maintenance of a personal lab manual. Specific evaluation procedures will be given in class. In general, grading will be based on accumulated points from homework assignments, tests, a final exam, and labs.

## Course Activities and Design

Principles and techniques are presented through lectures and class demonstrations. Students must register for lecture and one laboratory. Laboratory work will be performed in order to clarify certain facts in the lecture material.

## Course Content (Themes, Concepts, Issues and Skills)

#### 1.0 FUNDAMENTALS OF MEASUREMENT

The goal is to develop knowledge and skills in fundamentals of measurement.

Objectives:

1.1 Demonstrate the use of the metric system.

- Units of the "SI" system
- Conversion of units
- Prefixes, from very small to very large

1.2 Use the concept of "significant figures".

- In laboratory measurement
- In calculations and problem solving

1.3 Use vectors in calculations.

- Vectors and scalars
- Components of vectors
- Graphical solutions to vector problems
- Analytical solutions to vector problems

#### 2.0 ACCELERATED MOTION

The goal is to gain an understanding of accelerated motion.

Objectives:

2.1 Distinguish speed from velocity and solve appropriate problems involving these concepts.

2.2 Define uniform acceleration.

2.3 State the equations for uniformly accelerated motion and understand their derivation. Solve problems involving these equations.

2.4 Explain the phenomenon called "free fall" and that it is a special case of uniformly accelerated motion.

#### 3.0 NEWTON'S LAWS

The goal is to develop knowledge and skills in the understanding and use of Newton's Laws.

Objectives:

3.1 Explain Newton's First Law of Motion and its applications.

3.2 Explain Newton's Third Law of Motion and to be able to apply it.

3.3 Explain Newton's Second Law of Motion and its application. This must include the definition of force, of weight and how it is related to mass, of inertia and how they relate to acceleration.

3.4 Develop the ideas of Newton's Law of Gravitation, with emphasis on its being an inverse square law.

3.5 Delineate the role of friction forces in motion problems.

#### 4.0 WORK AND ENERGY

The goal is to develop an understanding of the relationship of work, power, and energy.

Objectives:

4.1 Define work and solve problems involving this quantity.

4.2 Define power and solve problems involving this quantity.

4.3 Define energy.

4.4 Define kinetic energy (KE) and solve problems involving this quantity.

4.5 Explain gravitational potential energy (GPE) and solve appropriate problems. Relate GPE and KE in specific cases, for example, a swinging pendulum.

#### 5.0 MOMENTUM

The goal is to gain knowledge and an understanding of the concept of momentum.

Objectives:

5.1 Explain the concept of linear momentum.

5.2 Grasp the nature of and importance of conservation as a physical principle. Develop the conservation of energy, of mass, of mass-energy, and especially of linear momentum.

5.3 Restate Newton's Second Law in order to understand the phenomenon called impulse.

5.4 Delineate elastic and inelastic collisions and use these ideas in the solution of appropriate problems.

#### 6.0 ROTATIONAL MOTION

The goal is to develop an understanding of rotational motion.

Objectives:

6.1 Study via analogy with linear-motion the concepts of angular distance, angular velocity, angular acceleration.

6.2 Learn a set of angular-motion equations by analogy to the linear-motion equations previously studied.

6.3 Discuss tangential speed, velocity and acceleration.

6.4 Study centripetal force.

6.5 Apply the above concepts to orbital motion.

6.6 Develop an understanding of projectile motion and to solve appropriate problems.

#### 7.0 MOTION OF RIGID BODIES

The goal is to gain knowledge and understanding of torque, rotational equilibrium, and angular momentum.

Objectives:

7.1 Explain the equilibrium of a point object.

7.2 Define torque and solve problems involving this phenomenon.

7.3 Study the conditions for rotational equilibrium and apply this knowledge.

7.4 Define the center of gravity.

7.5 Study the analogy of torque and angular acceleration to force and linear acceleration.

7.6 Develop an understanding of the conservation of angular momentum.

EACH WEEK, LABS WILL BE PERFORMED THAT CORRESPOND TO THE MATERIAL COVERED IN THE LECTURE SESSIONS.

## Department Notes

This is a pre-calculus introductory physics course for pre-medical, pre-dental, pre-chiropractic and pre-physical therapy students and students working toward a degree. Topic of study is mechanics, and includes statics, forces and motion, energy, collisions, circular motion and rotation. This course meets college transfer, Oregon Block Transfer and program requirements as listed above.

Lab B Notes: The lab for this course has been approved as "Lab B". This means that Faculty effort in preparation and evaluation generally occurs outside of scheduled class hours. Class format is a combination of Faculty lectures and demonstrations, guided student interactions and supervised student application of lectures. Students produce written work such as lab notebooks, reports, and responses in writing to assigned questions, and the Instructor is expected to comment on and grade this written work outside of schedule class hours. This evaluation will take place on a regular basis throughout the term.