Skip to Content

General Chemistry II

Course Number: CH 222
Transcript Title: General Chemistry II
Created: September 1, 2012
Updated: June 18, 2015
Total Credits: 5
Lecture Hours: 40
Lecture / Lab Hours: 0
Lab Hours: 30
Satisfies Cultural Literacy requirement: No
Satisfies General Education requirement: Yes
Grading options: A-F (default), P-NP, audit
Repeats available for credit: 0
Approved delivery mode:


CH 221

Course Description

Introduces stoichiometry; chemical reactions and equations; thermo chemistry; physical states of matter including properties of gases, liquids, solids and solutions; an introduction to organic chemistry; and chemical kinetics. This is the second course in a three course sequence. Prerequisite: CH 221. Audit available.

Intended Outcomes

After successful completion of this course, students will be able to:

  1. Apply the fundamental principles of chemical reactions and stoichiometry, the states of matter, molecular and ionic structures and interactions, intermolecular forces, thermochemistry, and chemical kinetics to subsequent courses in chemistry, biology, physics, geology, engineering and various other related disciplines that depend upon these principles for comprehension.
  2. Apply the fundamental principles of chemical reactions and stoichiometry, the states of matter, molecular and ionic structures and interactions, intermolecular forces, thermochemistry, and chemical kinetics to their understanding of themselves and their natural and technological environments.
  3. Use mathematical and chemical reasoning skills, both qualitative and quantitative, to solve specific problems encountered in everyday life and professional settings.
  4. Use effective collaborative skills when working with other people to solve complex problems and accomplish tasks.
  5. Use an understanding of written communication skills to effectively communicate complex scientific and technological ideas, models and conclusions through the generation of informal and formal writings and reports in a scientifically acceptable manner.
  6. Critically evaluate sources of scientific information to logically decide the bias, strengths and weaknesses of the information concerning the effect of chemistry and chemical concepts on themselves and their environment.

Alignment with Institutional Core Learning Outcomes

In-depth 1. Communicate effectively using appropriate reading, writing, listening, and speaking skills. (Communication)


2. Creatively solve problems by using relevant methods of research, personal reflection, reasoning, and evaluation of information. (Critical thinking and Problem-Solving)


3. Apply the knowledge, skills and abilities to enter and succeed in a defined profession or advanced academic program. (Professional Competence)

Not Addressed

4. Appreciate cultural diversity and constructively address issues that arise out of cultural differences in the workplace and community. (Cultural Awareness)


5. Recognize the consequences of human activity upon our social and natural world. (Community and Environmental Responsibility)

Outcome Assessment Strategies

At the beginning of the course, the instructor will detail the methods used to evaluate student progress and the criteria for assigning a course grade. The assessment methods may include one or more of the following: examinations, quizzes, homework assignments, laboratory write-ups, research papers, small group problem solving, oral presentations or maintenance of a personal lab notebook.

Course Activities and Design

Homework, Quizzes, Papers, Laboratory Experiments, Forum Discussion. Lecture and Laboratory Design

Course Content (Themes, Concepts, Issues and Skills)

  1. Stoichiometry
  2. Chemical Reactions
  3. Thermochemistry
  4. Properties of Gases, Liquids, Solids and Solutions
  5. Intermolecular Forces
  6. Organic Chemistry
  7. Special Topics
  8. Modern Materials
    1. Nanotechnology
    2. Liquid Crystals
    3. Semiconductors
    4. Ceramics
    5. Synthetic and Natural Polymers
  9. Environmental Aspects of Chemistry
    1. Water Quality
  10. Spectroscopy
    1. X-Ray Chrystallography
    2. NMR

Department Notes

Chemistry 222 is the second of a three term, 15-credit hour (5 hours/term), chemistry sequence designed to provide a year of general chemistry to science majors. It will meet transfer school requirements for such science majors as: chemistry, physics, chemical engineering, pre-medicine, and other pre-professional programs. The class consists of lecture, recitation and laboratory. The lecture time is used to provide the student with basic chemical concepts and mathematical applications to chemistry. The recitation time is for practicing problem solving in small group settings allowing for greater student-student as well as student-teacher contact and encouraging individual and team development. The laboratory re-enforces concepts presented in lecture and provides the student a hands-on opportunity to explore these.

Faculty effort in preparation and evaluation generally occurs outside of scheduled class hours. Class format is a combination of Faculty lectures and demonstrations, guided student interactions and supervised student application of lectures. Students produce written work such as lab notebooks, reports, and responses in writing to assigned questions, and the Instructor is expected to comment on and grade this written work outside of schedule class hours. This evaluation will take place on a regular basis throughout the term.